A kernel-based classifier on a Riemannian manifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A kernel based classifier on a Riemannian manifold

Let X be a random variable taking values in a compact Riemannian manifold without boundary, and let Y be a discrete random variable valued in {0; 1} which represents a classification label. We introduce a kernel rule for classification on the manifold based on n independent copies of (X, Y ). Under mild assumptions on the bandwidth sequence, it is shown that this kernel rule is consistent in th...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

on a class of paracontact riemannian manifold

we classify the paracontact riemannian manifolds that their rieman-nian curvature satisfies in the certain condition and we show that thisclassification is hold for the special cases semi-symmetric and locally sym-metric spaces. finally we study paracontact riemannian manifolds satis-fying r(x, ξ).s = 0, where s is the ricci tensor.

متن کامل

Approximation of the Heat Kernel on a Riemannian Manifold Based on the Smolyanov–Weizsäcker Approach

Let M be a compact Riemannian manifold without boundary isometrically embedded into Rm, WM,t be the distribution of a Brownian bridge starting at x ∈M and returning to M at time t. Let Qt : C(M)→ C(M), (Qtf)(x) = ∫ C([0,1],Rm) f(ω(t))W x M,t(dω), and let P = {0 = t0 < t1 < · · · < tn = t} be a partition of [0, t]. It was shown in [2] that Qt1−t0 · · ·Qtn−tn−1f → e−t ∆M 2 f , as |P| → 0, (1) in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Decisions

سال: 2008

ISSN: 0721-2631

DOI: 10.1524/stnd.2008.0911